Solution 5

1. Determine whether \mathbb{Z} and \mathbb{Q} are complete sets in \mathbb{R} .

Solution. \mathbb{Z} is a closed subset so it is complete. On the other hand, the closure of \mathbb{Q} is \mathbb{R} , it is not complete.

2. We define a metric on \mathbb{N} , the set of all natural numbers by setting

$$d(n,m) = \left|\frac{1}{n} - \frac{1}{m}\right|$$

- (a) Show that it is not a complete metric.
- (b) Describe how to make it complete by adding one new point.

Solution. The sequence $\{n\}$ is a Cauchy sequence in this metric but it has no limit. Its completion is obtained by adding an ideal point called ∞ and define $\tilde{d}(x, y) = d(x, y)$ when $x, y \in \mathbb{N}$ and $\tilde{d}(x, \infty) = 1/x$ for all $x \in \mathbb{N}$ and $\tilde{d}(\infty, \infty) = 0$.

3. Optional. Let (X, d) be a metric space. Fixing a point $p \in X$, for each x define a function

$$f_x(z) = d(z, x) - d(z, p).$$

- (a) Show that each f_x is a bounded, uniformly continuous function in X.
- (b) Show that the map $x \mapsto f_x$ is an isometric embedding of (X, d) to $C_b(X)$ (shorthand for $C_b(X, \mathbb{R})$). In other words,

$$||f_x - f_y||_{\infty} = d(x, y), \quad \forall x, y \in X.$$

(c) Deduce from (b) the completion theorem.

This approach is much shorter than the proof given in notes. However, it is not so inspiring. Solution.

- (a) From $|f_x(z)| = |d(z,x) d(z,p)| \le d(x,p)$, and from $|f_x(z) f_x(z')| \le |d(z,x) d(z',x)| + |d(z',p) d(z,p)| \le 2d(z,z')$, it follows that each f_x is a bounded, uniformly continuous function in X.
- (b) $|f_x(z) f_y(z)| = |d(z, x) d(z, y)| \le d(x, y)$, and equality holds taking z = x. Hence

$$||f_x - f_y||_{\infty} = d(x, y), \quad \forall x, y \in X$$

- (c) Let $Y_0 = \{f_x : x \in X\} \subset C_b(X)$. Let Y be the closure of Y_0 in the complete metric space $(C_b(X), \rho)$ with sup-norm ρ . Then (Y, ρ) is a completion of (X, d).
- 4. Let T be a continuous map on the complete metric space X. Suppose that for some k, T^k becomes a contraction. Show that T admits a unique fixed point. This generalizes the contraction mapping principle in the case k = 1.

Solution. Since T^k is a contraction, there is a unique fixed point $x \in X$ such that $T^k x = x$. Then $T^{k+1}x = T^kTx = Tx$ shows that Tx is also a fixed point of T^k . From the uniqueness of fixed point we conclude Tx = x, that is, x is a fixed point for T. Uniqueness is clear since any fixed point of T is also a fixed point of T^k .

5. Show that the equation $x = \frac{1}{2}\cos^2 x$ has a unique solution in \mathbb{R} .

Solution. Let $Tx = \frac{1}{2}\cos^2 x$. Then $T'(x) = -\frac{1}{2}\sin 2x$ so $|T'| \le 1/2$. It follows that $|Tx - Ty| \le \frac{1}{2}|x - y|$, T is a contraction. By the fixed point theorem, we conclude that $x = \frac{1}{2}\cos^2 x$ has a unique solution.

6. Show that the equation $2x \sin x - x^4 + x = 0.001$ has a root near x = 0.

Solution. Here $\Psi(x) = 2x \sin x - x^4$. We need to find some r, γ so it is a contraction. We have

$$\begin{aligned} |\Psi(x_1) - \Psi(x_2)| &= \left| 2x_1(\sin x_1 - \sin x_2) + 2(x_1 - x_2)\sin x_2 - (x_1^4 - x_2^4) \right| \\ &= \left| 2x_1\cos c(x_1 - x_2) + 2(x_1 - x_2)\sin x_2 - (x_1^2 + x_2^2)(x_1 + x_2)(x_1 - x_2) \right| \\ &\leq \left(2r + r + (2r^2)(2r) \right) |x_1 - x_2| . \end{aligned}$$

Taking r = 1/4, $\gamma = 2r + r + (2r^2)(2r) = 13/16 < 1$. By the Perturbation of Identity Theorem, the equation $2x \sin x - x^4 + x = y$ is solvable for any y satisfying $|y| \le R = (1 - \gamma)r = 0.0468$, including y = 0.001.

7. Let $f : \mathbb{R} \to \mathbb{R}$ be C^2 and $f(x_0) = 0, f'(x_0) \neq 0$. Show that there exists some $\rho > 0$ such that

$$Tx = x - \frac{f(x)}{f'(x)}, \quad x \in (x_0 - \rho, x_0 + \rho),$$

is a contraction. This provides a justification for Newton's method in finding roots for an equation.

Solution. $T'(x) = \frac{f(x)f''(x)}{f'(x)^2}$. Since f is C^2 and $f(x_0) = 0$, $f'(x_0) \neq 0$, it follows that T is C^1 in a neighborhood of x_0 with $T(x_0) = x_0$, $T'(x_0) = 0$ and there exists some $\rho > 0$

$$|T'(x)| \le \frac{1}{2}, \quad x \in [x_0 - \rho, x_0 + \rho].$$

As a result, T is a contraction in $[x_0 - \rho, x_0 + \rho]$. By Contraction Mapping Principle, there is a fixed point for T. From the definition of T, this fixed point is a root for the equation f(x) = 0.